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STT-MTJ

Properties
• Nonvolatile
• High endurance
• CMOS compatible

Ternary Neural Networks

Ternary Synapse Based STT-MTJ
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Switching Probability

From [3] the switching probability is given by-

𝑃 Δ𝑤𝑖𝑗 𝑘 = 𝑘𝑖𝑗 + 𝑠𝑖𝑔𝑛 𝜚 Δ𝑊𝑖𝑗
𝑙 𝑘 = 𝜏 𝑣𝑖𝑗

𝑃 Δ𝑤𝑖𝑗 𝑘 = 𝑘𝑖𝑗 = 1 − 𝜏 𝑣𝑖𝑗

𝜏 − 𝑠𝑡𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝜏 𝑣 = tanh 𝑚 𝑣

The switching probability of each memristor

𝑃 Δ𝑡
𝑢

𝑅
> 𝜖 = 1 − erf

𝜋

2 2 exp
Δ𝑡𝑥

𝑐𝑅

𝑃𝑟𝑖𝑔ℎ𝑡 ∝ 𝑓 Δ𝑊𝑖𝑗
𝑙 𝑘 − Δ𝑊𝑖𝑗

𝑙 𝑘

𝑃𝑙𝑒𝑓𝑡 ∝ 𝑓 Δ𝑊𝑖𝑗
𝑙 𝑘

*assuming high current density
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Training With STT-MTJ Based Synapse 

STT-MRAM based synapse
Software synapse

Plugging the STT-MTJ based synapse switching behavior to CNN network training algorithm

Initial results

Setup
• Dataset- MNIST 28x28, 

60000 training set, 10000 
validation set

• Batch size-10000
• Number of epochs- 1200
• CNN architecture-

Results
• The network manage to 

converge to similar error rate 
as the software performance

• The convergence suffers 
from “Noise”

Main controllerMemory buffer

Shared bus

TNN Hardware Architecture

Main architecture concept
• Tile based architecture
• Each tile contain: several synapse arrays, 

shared local computation units (example: 
activation and its’ derivatives), local buffer, 
etc…

• Main controller to map each layer to one or 
more synapse arrays

Improve power consumption and 
run-time 
• Reduce memory accesses
• In-memory computation of the 

GXNOR (= dot-product)

GXNOR Inverse  read Write

Need to support 3 operations:
1. GXNOR (“read”)
2. Inverse read
3. Write

DNN- High overhead- hardware computation and 
memory intensive, TNN constrains the weights to 
−1,0,1 and replaced the multiply-accumulate 

operations with Gated-XNOR operation.

Training DNN

discretization

Training TNN

Ternary space 
−1,0,1

Logic operations 
between weights and 

neurons (GXNOR)

Matrix-vector 
multiplication

Real value of weights 
and neurons

Gated XNOR- If one of the 
inputs is zero then the output 
is zero else XNOR 

-1 -1 1

-1 0 0

-1 1 -1

0 -1 0

0 0 0

0 1 0

1 -1 -1

1 0 0

1 1 1

Weight Update-
Based on the work “Gated XNOR Networks: Deep 
Neural Networks with Ternary Weights and Activations 
under a Unified Discretization Framework” [3] 
• The weight update value are restricted to the discrete 

ternary space.
• For calculating the update there is no need to keep the 

full precision value of the weights. 

From [3]- discrete state transition in ternary weight space

• The weight increment Δ𝑤𝑖𝑗 𝑘 is a stochastic function of 

the Gradient Δ𝑊𝑖𝑗
𝑙 𝑘 = −𝜂

𝜕𝐸 𝑊 𝑘 ,𝑌 𝑘

𝜕𝑊𝑖𝑗
𝑙 𝑘

.

𝑴𝑳

𝑴𝑹
𝑴𝑳 𝑴𝑹 State

𝑅𝑜𝑓𝑓 𝑅𝑜𝑓𝑓 0

𝑅𝑜𝑓𝑓 𝑅𝑜𝑛 -1

𝑅𝑜𝑛 𝑅𝑜𝑓𝑓 1

𝑅𝑜𝑛 𝑅𝑜𝑛 0

• At the feedforward stage the voltage 
supply (“the previous layer neuron”) of 

both memristor are 𝑢𝑙,𝑖 = −𝑢𝑟,𝑖 = 𝑥𝑖
𝑙

• The current is given by 

𝐼 =
𝑀𝑅 −𝑀𝐿

𝑀𝐿𝑀𝑅
𝑢

• Example 𝑢=-1

𝑴𝑳 𝑴𝑹 Out

𝑅𝑜𝑓𝑓 𝑅𝑜𝑓𝑓 0

𝑅𝑜𝑓𝑓 𝑅𝑜𝑛 1

𝑅𝑜𝑛 𝑅𝑜𝑓𝑓 -1

𝑅𝑜𝑛 𝑅𝑜𝑛 0

𝒘

0

−1

1

0

For propagating the error back through 
the network the value 𝑊𝑇𝑦 need to be 
calculated.

The rows acts as the input with voltage 
level 𝑦

The output current per column per 
memristor (H\L) is summed and then 
compared.

The gradient value Δ𝑊 = 𝑥𝑇𝑦
Notice- 𝑥 ∈ {0,1}

The left memristor is updated with respect to 
Δ𝑊

𝑒𝑖1 = ቊ
𝑠𝑖𝑔𝑛 𝑦𝑖 , 0 < 𝑡 < 𝑎𝑏𝑠( 𝑦1 )

0, 𝑎𝑏𝑠 𝑦1 < 𝑡 < 𝑇𝑤𝑟

The right memristor is updated with respect to 
Δ𝑊 − Δ𝑊
𝑒𝑖2

= ቊ
𝑠𝑖𝑔𝑛 𝑦𝑖 − 𝑦𝑖 , 0 < 𝑡 < 𝑎𝑏𝑠(𝑦𝑖 − 𝑦𝑖 )

0, 𝑎𝑏𝑠 𝑦𝑖 − 𝑦𝑖 < 𝑡 < 𝑇𝑤𝑟

Magnetic tunnel junction (MTJ)
• Two ferromagnetic electrodes separated by an 

insulator barrier
• Free layer- this layer polarization can be set by the 

current flowing through it (Spin-transfer torque)
• Fixed layer (“Pinned”)- fixed polarization, used as 

reference layer

Fixed Layer

Free Layer

Insulator

Free Layer

Insulator

Fixed Layer

Parallel 
polarization-
Low resistance 
𝑹𝒐𝒏

Ani-parallel 
polarization-
High resistance 
𝑹𝒐𝒇𝒇

𝑢 𝑤 out

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

𝑢 & 𝑤 ! = 0

• Low power consumption
• High write and read speed
• Stochastic switching delay

Stochastic switching delay
Critical current of the device

𝐼𝑐0 =
2 𝑒

ℏ

𝛼𝑉 1 ± 𝑃

𝑃

𝜇0𝑀𝑠𝑀𝑒𝑓𝑓

2

For 𝑰 ≫ 𝑰𝒄𝟎 high current regimeFor 𝑰 ≪ 𝑰𝒄𝟎 low current regime

𝜏 = 𝐶
1

𝐼 − 𝐼𝑐0
log

𝜋

2 𝜃

𝜃~𝑁 0, 𝜃0 , 𝜃0 =
𝐾𝐵𝑇

𝜇0𝐻𝐾𝑀𝑠𝑉
𝜏 = 𝒇0

−1 exp
𝐸0
𝑘𝐵𝑇

1 −
𝐼

𝐼𝑐0

𝑃𝑠𝑤 = 1 − exp −
𝛥𝑡

𝜏

#layer Type Size

1 Input 28x28

2 Conv 32×5× 5

3 Pooling 2 × 2

4 Conv 64 ×5× 5

5 Pooling 2x2

6 FC 512

7 FC 10

Future steps
• Improve the STT-MTJ 

switching models
• “Play” with the STT-MTJ 

properties

Switching probability for state -1

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

Delta Delta

Epoch

E
rr

o
r 

ra
te

 [
%

]

Validation error rate

MTJ-Based Hardware Synapse Design 
for Ternary Deep Neural Networks

Tzofnat Greenberg, Ben Perach, Daniel Soudry, and Shahar Kvatinsky


